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The finite-size scaling spectra of the spin-l/2 X X Z  Heisenberg chain with 
toroidal boundary conditions and an even number of sites provide a projection 
mechanism yielding the spectra of models with a central charge c < 1, including 
the unitary and nonunitary minimal series. Taking into account the half-integer 
angular momentum sectors--which correspond to chains with an odd number 
of sites--in many cases leads to new spinor operators appearing in the projected 
systems. These new sectors in the X X Z  chain correspond to new types of 
frustration lines in the projected minimal models. The corresponding new 
boundary conditions in the Hamiltonian limit are investigated for the Ising 
model and the 3-state Potts model and are shown to be related to duality trans- 
formations which are an additional symmetry at their self-dual critical point. By 
different ways of projecting systems we find models with the same central charge 
sharing the same operator content and modular invariant partition function 
which, however, differ in the distribution of operators into sectors and hence 
in the physical meaning of the operators involved. Related to the projection 
mechanism in the continuum there are remarkable symmetry properties of the 
finite X X Z  chain. The observed degeneracies in the energy and momentum 
spectra are shown to be the consequence of intertwining relations involving 
Uq[sl(2)] quantum algebra transformations. 

KEY WORDS: X X Z  Heisenberg chain; scaling limit; conformal invariance; 
minimal models; quantum algebras; intertwiners; duality; toroidal boundary 
conditions. 

1. I N T R O D U C T I O N  

Recen t ly ,  t he  s p i n - l / 2  X X Z  H e i s e n b e r g  c h a i n  h a s  a t t r a c t e d  i n t e r e s t  s ince  

i t  was  f o u n d  (1) t h a t  t he  f in i te -s ize  s ca l i ng  l im i t  s p e c t r a  o f  t he  c h a i n  w i t h  
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toroidal boundary conditions and an even number of sites allow a projec- 
tion mechanism that yields the spectra of minimal unitary models with 
central charge c < 1. The projection mechanism for the continuum models 
is based on the Feigin-Fuchs construction (2) of the character functions of 
the Virasoro algebra with central charge c < 1 from the character functions 
with c = 1. By taking differences of partition functions in the finite-size 
scaling limit of the X X Z  Hamiltonian with toroidal boundary conditions 
(which corresponds to a free boson field theory with central charge c = 1), 
one obtains partition functions for models with a central charge c < 1. This 
can be done in various ways, yielding two classes of models, which we call 
the R and the L models, and which in turn are each divided into infinite 
series of models labeled by a positive integer, also denoted by R and L, 
respectively. 

But it has also been realized (1) that the projection mechanism has a 
meaning for finite systems as well. In many cases, huge degeneracies in the 
spectra allow an analogous operation on the finite-size spectra, where 
instead of differences of partition functions one considers differences of 
spectra (where this means differences in terms of sets of eigenvalues). This 
means that one throws away all degenerate levels, keeping only singlets. In 
this way, one can obtain, for instance, the exact finite-size spectra of the 
Ising and 3-state Potts quantum chains with N sites from the spectra of the 
XXZ  chain with suitably chosen anisotropy and boundary conditions with 
2N sites. (1) 

Although the spin-l/2 X X Z  Heisenberg chain with toroidal boundary 
conditions is not invariant under the quantum algebra Uq[sl(2)], it has 
been realized (3) that part of the degeneracies related to the projection 
mechanism which were observed for finite chains (1) can be explained by 
investigation of the action of Uq[sl(2)] transformations. In this paper, we 
show that this is indeed true for all the degeneracies observed in ref. 1 and 
that in this way one can explain the degeneracy of both the energy and the 
momentum eigenvalues of the respective levels. This answers part of the 
questions left open in ref. 1. 

Similar projection mechanisms to the one outlined above have been 
found in the X X Z  Heisenberg chain with free boundary conditions and 
appropriately chosen surface fields at the ends of the chain (4-6) (including 
a special choice with a Uq[sl(2)]-invariant Hamiltonian) and for a spin-1 
quantum chain (7) which allows one to extract the spectra of systems 
belonging to the minimal superconformal series. Recently, similar struc- 
tures have been observed (g) by investigating the spectrum of the 3-state 
superintegrable chiral Potts model, which is related to a spin-1 XXZ chain 
with anisotropy parameter 7 = 1t/3. 

In this paper we generalize the projection mechanism of ref. 1. The 
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class of systems obtained through the projection procedure is enlarged to 
obtain models for all values c < 1 of the central charge, including the non- 
unitary minimal series. Our main emphasis, however, lies in the investiga- 
tion of the same type of projection mechanism, but now applied to half- 
integer angular momentum sectors, i.e., we use the spectra of the XXZ 
chain with an odd number of sites. This results in the appearance of new 
spinor operators in two classes of models and it therefore corresponds to 
new types of frustration lines in the minimal models which are obtained by 
the projection procedure. As explicit examples we study the Hamiltonian 
limit of the Ising model and the 3-state Potts model. Here we find interest- 
ing new boundary conditions which have not been considered so far and 
which turn out to be related to duality transformations. 

Of special interest are also those models where the same operator 
content can be obtained from an even and an odd number of sites. Our 
numerical data for finite chains indicate that in these cases it is not 
necessary to consider even and odd lengths in the finite chains separately. 
This observation agrees with results obtained for open chains. (6) 

Another result of our investigation is that we find systems which have 
the same central charge, the same operator content, and the same modular 
invariant partition function, but which differ in the distribution of operators 
into sectors defined by the global symmetries of the model. This means that 
the physical significance of these operators is different and therefore the 
operator content and the modular invariant partition function alone are 
not sufficient to characterize completely the universality class of a critical 
system. One must take into account also the possible discrete symmetries 
that are not determined by the partition function alone. 

Our paper is organized as follows. In Section 2 we show how one can 
obtain the spectra of c < 1 systems by projection from the finite-size scaling 
spectra of the J(XZ Heisenberg chain in the continuum following the 
scheme set up in ref. 1, our emphasis, however, lying on the half-integer 
angular momentum sectors, which in this context have not been considered 
previously. The R and L models are defined and the operator content is 
given for the R =  1, 2 and L =  1, 2 models. We illustrate the projection 
mechanism by means of explicit examples for  the R = 1 and L = 1 models, 
where one obtains additional sectors from the half-integer angular momen- 
tum sectors involving new spinor operators in the projected systems. 
Section 3 deals with the implications of the projection mechanism for finite 
chains. All the degeneracies observed here and in ref. 1 can be explained 
using the representation theory of the quantum algebra Uq[sl(2)] (see 
Appendix A). In Section 4 we give an interpretation of the new sectors 
obtained from half-integer spin sectors of the XXZ chain. Here we focus on 
the minimal models in the R = 1 series. As two explicit examples we consider 
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the Hamiltonian limit of the Ising model and of the 3-state Potts model. 
We show that for these cases one has to choose a new type of boundary 
condition which is related to duality transformations, which in a sense act 
as a "square root" of the translation operator. Furthermore, we present 
some numerical data for a model with central charge c = -22/5, which 
belongs to that class of models for which the same operator content is 
obtained from the scaling limit using an even and an odd number of sites 
in the XXZ Heisenberg chain. 

In the two appendices we show that Uq[sl(2)] quantum group trans- 
formations explain the observed degeneracies between the spectra of the 
finite XXZ Heisenberg chain with different appropriately chosen toroidal 
boundary conditions. For this purpose, following the ideas of ref. 3, 
we establish intertwining relations between different sectors of XXZ 
Hamiltonians with different toroidal boundary conditions using the quan- 
tum algebra generators and make use of the known structure of the 
irreducible representations of Uq[sl(2)]. Going beyond the results of ref. 3, 
this discussion also includes the equality of the momenta of the levels con- 
cerned. Furthermore, we give a short reminder of duality transformations 
for the Ising and the 3-state Potts quantum chains. 

2. PROJECTION M E C H A N I S M  IN THE FINITE-SIZE 
SCALING L IMIT  

Let us consider the spin-l/2 XXZ Heisenberg chain with a general 
toroidal boundary condition a defined by the Hamiltonian (9'1~ 

H(q,a,N)= -�89 (a+aj-+l +a/af+l +(q+q-~)a;a;+l) 
j 1 

+ea+ a;  +e- laNa~ + (q+q-~) aZua~} (2.1) 

acting on a Hilbert space J r (N)  ~ (C2) | Here N denotes the number of 
sites, q and e are (for the moment) arbitrary complex numbers, and 
a + = a~. +_ iaf, where a f ,  a f ,  and a~ are the Pauli matrices acting on the 
j th  site of the chain. Note that the Hamiltonian H(q, a, N) (which is related 
to the six-vertex model in the presence of a horizontal electric field ">~3) is 
Hermitian if le[ = 1 and if either q is real or Iql = 1. 

For arbitrary values of the parameters q and ct, the Hamiltonian (2.1) 
commutes with the total spin (or "charge") operator 

N 

S ~=�89 ~ ~ (2.2) 
j = l  
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Therefore, we can split the Hilbert space 3r into a direct sum of 2N+  1 
spaces with fixed value Q of S z, 

Q = N/2 
Jt~(U) = �9 ~UfQ(N) (2.3) 

Q = --N/2 

where Q runs over the integer (half-integer) numbers depending on N being 
even (odd), respectively. We denote by ~o the projectors onto the 
subspaces We, - N / 2  <~ Q ~ N/2. The dimension of ~Q(N) is given by 

N 
k!(n - k)! 

The Hamiltonian (2.1) also commutes with a translation operator 
T(a, N), which can be represented as an operator on oVf(N) in terms of 
Pauli matrices as follows: 

N - - 1  N - - 1  N - - I  

T(~,N) =~-"z~/2" H PJ= H PJ "cr H fiy(~,N) 7-SZ/N (2.4) 
j = l  j = l  j = l  

Here the operators Pj (which permute the observables on sites j and j + 1 
in an obvious way) and/~: are defined by 

Pj=�88 +a]-a++l +2(a~a}+, + l ) ] = P ~ = P f  1 (2.5) 

P j ( ~, N) = ;X -a j /2N p jo~ a}/2N =- ~a} + l/2N p j a  ~ 

=�88 +O~'/Nff~ff++l + 2(a}a~+, + l ) ]  (2.6) 

where j = 1,..., N -  1. The symbol IV[ is used for the ordered product 

N - - 1  

I-[ P j=PI"P;  . . . . .  PN-~ (2.7) 
j=l  

The translation operator T(e, N) is related to the momentum operator 
P(7, N) by 

T(c~, N) = exp[ --4. P(~, N)]  (2.8) 

Note that T(a, N) is a unitary operator on YF(N) [and hence P(~, N) is 
Hermitian] if ]~1 = 1 and that T(a, N) N = ~ s, and therefore is constant on 
each subspace oefo(N), (2.3). 

For later convenience we introduce a "charge conjugation" operator C 
defined by 

N 
~=C* C -1 (2.9) C =  H aj = 

j=l 
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It satisfies the relations C. H(q, c~, N).  C = H(q, ~- 1 N), C. T(c~, N). C = 
T(a i, N), and C . S  ~ . C =  - S  ~. 

We are now going to present an extended version of the projection 
mechanism developed in ref. 1. For this purpose let us recall the universal 
finite-size scaling limit partition function of the spin-l/2 XXZ Heisenberg 
chain. In what follows, we restrict ourselves to Iq[ = t~l = 1 in Eq. (2.1), 
which ensures the hermiticity of both the Hamiltonian H(q, ~, N) of (2.1) 
and the momentum operator P(cq N) in (2.8). We use the parametrization 

q = - exp ( - i~7 ) ,  ~ = exp(2niI) (2.10) 

with two real numbers 0 ~< y < 1 and - 1/2 < l<~ 1/2. The Hamiltonian (2.1) 
equipped with the normalization factor that guarantees an isotropic 
continuum limit is given by 

Ht(h, N)= - -  
2 sin(ny) 

H(q = -exp( - inT) ,  c~ = exp(2nil), N) (2.11) 

where h >~ 1/4 is given by 

h =  �88 -1 (2.12) 

The finite-size scaling limit of this system is known to be described by the 
c = 1 conformal field theory of a free compactified boson with the compac- 
tification radius ~ being related to the anisotropy 7 by ~ 2  = 8h (see, e.g., 
ref. 14). Denoting the eigenvalues of H~(h, N) = Hi(h, N).  ~'o_ in the charge 
sector Q with -N /2~Q<~N/2  by E~;y(h, N) and the corresponding 
momenta by 

N 
Plo;j(h, N), j=  1, 2,..., (Q + N/2) 

one obtains the following expression for the finite-size scaling partition 
function of H~(h, N)(1~ 

g~(z, ~)= lim 8~(z, ~, N) 
N ~ o o  

(Q+%9 
1 l l 1 = lim ~ Z(1/2)(EQ;j(h'N)+PQ;J(h'N)!z(1/2)(EQ ;j(h'N)-pQ;J(h'N)) 

N ~ c ~  j ~ l  

= 2 Z[-Q + 4 h ( l +  v)]2/16hl-Iv(Z ) ~[O--4h(l+v)]2/16haFIv(~ ) (2.13) 
vE ze 
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In this equation, -i  EQ;j(h, 

E ;j(h, 

N) and Pto;j(h, N) denote the scaled gaps ~ 

U (EtQ;j(h ' N ) -  Eo(h, N)) (2.14) N) 

N 1 
/~2;j(h, N) =~-~ Po;y(h, N) (2.15) 

where E0(h, N)=E~ N) is the ground-state energy of the periodic 
Hamiltonian and Hv(z)=l-[ ,~,  ( 1 - z ' )  -1 is the generating function of 
the number of partitions. Equation (2.15) has to be understood carefully. 
Since the finite-size scaling partition function (2.13) should only contain 
the universal term of the partition function, one has to neglect macroscopic 
momenta (i.e., momenta of order one). To be more precise, the levels that 
contribute to the partition function g~(z, ~) in Eq. (2.13) have a macro- 
scopic momentum of modulus 0 or n, depending on v being even or odd, 
i,e., Eq. (2.15) should be modified as follows: 

N [pto;j(h ' N ) - r c ~ ; j ( N ) ]  P~;j(h, N) = (2.16) 

where ~c~;j(N)e {0,1}, depending on the value of the macroscopic 
momentum of the corresponding level. Note that the scaled momenta are 
defined modulo N (since the momenta are defined modulo 2~). 

It is now our aim to extract the c < 1 character function of irreducible 
representations of the Virasoro algebra out of the partition functions 
g~(z, ~) of (2.13). We parametrize the central charge c <  1 (we consider 
only real values of c) by a positive real number m by 

6 
c = l -  (2.17) 

m(m + 1) 

Then one has to distinguish between the case that m is a rational number 
(corresponding to minimal models) and the other case that m is irrational 
(corresponding to nonminimal models, i.e., the number of irreducible 
highest weight representations is infinite in this case). For irrational values 
of m, the character functions Xr.,(z)= tr(z r~ (Lo generates, besides the 
central element c, the Cartan subalgebra of the Virasoro algebra) for a 
highest weight representation with highest weight A .... 

[(m + 1) r - - m s ]  z - 1 

Ar's = 4m(m + 1) (2.18) 
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with r, s = 1, 2 ..... are given by 

)~r,s(Z) = (z ~ ..... z -~,~) H v ( z )  (2.19) 

If; however, m is rational, say m = u/v with coprime positive integers u and 
v, the characters are (~7) 

Zr, s(Z) = f2~,~ (z) - s _~(z) (2.20) 

(2r, s(Z)= Z Z{[2u(u+v)v+(u+v)r us32-vz}/4u(u+v)11v(z) (2.21) 
V~ /7 

and we can restrict the possible values of r and s to the set 

l < < . r ~ u - 1 ,  l < . s < . u + v - 1  (2.22) 

The representations are unitary for integer values of rn, (18) i.e., for v = 1. 
The shift of the central charge c from the free boson value c = 1 to a 

value c < 1 [see (2.17)] is now performed by choosing a new ground state. 
For this let us use the level 10 Eo;i0(h, N) in the charge sector Q = 0 (note that 
we do not necessarily take the lowest eigenvalue in this sector) of the 
Hamiltonian (2.tl)  with boundary condition l o. The number jo>~l has 
to be chosen such that this level corresponds to the one that gives the 
contribution zh(lo+vO)2Z h(lOWvO)2 in the partition function (2.13), where 
(lo + vo) 2 is related to h by 

6 
c = l  - - -  1 - 2 4 h ( l o + v o )  2 (2.23) 

r e ( m +  1) 

or equivalently to ~ by 7 = 1 - m ( m  + 1 )(lo + vo) 2. (This means thatjo labels 
the level that contributes the difference of the universal parts of the ground- 
state energies Z(1--c)/24Z (1-c)/24 between the original X X Z  Heisenberg chain 
with c = 1 and the system we wish to project out.) Here, - 1 / 2  ~< l o <~ 1/2 
and Vo is an integer. For definiteness, we choose the square root in 
Eq. (2.23) to be positive, hence lo+ Vo= [4hm(m + 1)] -m .  

We now define new scaled gaps with respect to our new ground state 
E~;jo(h, N) with h satisfying Eq. (2.23) by I-of. Eqs. (2.14)-(2.16)] 

P~;j(N) = N r ~'k(t~176 N) L~Q;j __ Eo;io(h,t0 N)]  (2.24) 

P~; j (N)=  ~--~U [p~,}+ ~o)(h,;  N) - 7r~. j (U) ] ,  (2.25) 

where k for the moment is arbitrary and 

~kQ;j~_ k(lo+vo) vlo+vo 
I~Q;j - -  ~  jo  
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Note that the momentum lo Po;jo(h, N) of the new ground state always 
vanishes [again this is only true up to a possible shift of ~; see the remark 
concerning Eqs. (2.15) and (2.16)]. The corresponding finite-size scaling 
partition function is given by [cf. Eq. (2.13)] 

~ ( z ,  2)= lira ~-~(z, Y, N) 
N ~  

(Q+%2) 
= lim ~ z(m)(r~;A N) + P~; j (N) )~ (1 /2 ) (~Q; j (N) -  P~;j(N)) 

N ~ o 9  j = l  

= ~ z([m(m+a)(t~176176176 
v ~  

X Z { [m(rn + 1)(10 + vo) Q - k - -  v/(lo + v0] 2 -- 1 }/4m(m + 1 ) ~ / V  ( 2 )  (2.26) 

We are now in a position to obtain the finite-size scaling partition 
function of the unitary and nonunitary models with central charge less than 
one. Equation (2.23) gives c as a function of the two free (real) parameters 
h and l o + Vo. Following closely the results of ref. 1, we define two classes 
of series of c < 1 models by relating h and lo + Vo through 

1 M 
lo + Vo . . . .  (2.27) 

M 4h 

which we shall call the R-models if M > 0 and the L-models if M < 0. We 
label these two series of models by the positive number R = M or L = - M ,  
respectively (M r 0), which will be integer throughout this paper? We first 
investigate the R-models (M = R > 0). 

2.1. The R -mode ls  

According to Eq. (2.27), we define the R-models by the following 
relation between h and m, which defines the central charge according to 
Eq. (2.17): 

R2m+ l 
h = ( 2 . 2 8 )  

4 m 

which means that h >R2/4 for all m. Using Eqs. (2.12) and (2.23), one 
obtains 

m 1 
y = l  R2(m+l ), lo+VO=R(m+l) (2.29) 

where we shall consider only integer values of R. 

3 Note that we change the notation compared to ref. 1 at this point. 
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For m irrational, the finite-size scaling partition functions ~ ( z ,  ~) of 
(2.26) are given by [see Eq. (2.18)] 

~ke(Z, 2) = ~ Z~R+k'~-e/RHv(Z) 2a'"+~'k+Q/"Hv(~ ) (2.30) 
V~7/ 

One recognizes that for integer values of R one can recover the character 
functions (2.19) through 

D 4g( , e) = e) - f  s(z, e) 

= ~ ZR~,R~I_g)(Z) ZR~,R(I+~)(~) (2.31) 
r ~ l  

where f and g are integers with f > 0 and - f  < g < f. These quantities 
are the finite-size scaling partition functions of nonminimal models with 
central charge given by (2.17). The integer numbers R2g and Rflabel  the 
boundary conditions and sectors of the projected systems according their 
internal global symmetries, g = 0  corresponding to periodic boundary 
conditions. Note that a vacuum representation ()~,~(z);~,~(ff)) only occurs 
for the case R = 1 (corresponding to the 2R models of ref. 1). The same is 
true for the modular invariant partition function 

~m(Z, Z)= ~ )~r,s(Z) ~r,s(Z) (2 .32)  
r,s~ l 

which for R--- 1 can be written as the sum of the sectors Do y of Eq. (2.31), 

dm(Z, ~) = ~ DYo(Z, e) (2.33) 
f = l  

which is impossible for R r 1. 
We now turn to the case m rational, m = u/v, with coprime positive 

integers u and v. Equations (2.28) and (2.29) take the form 

R 2 u + v  u v 
h -  4 ~ - '  7=1 R2(u+v)' lo+VO=R(u+v) (2.34) 

The finite-size scaling partition function o~(z ,  2) now has the periodicity 
property ~ ( z ,  ~) - ~ k  +-"t" - - ~  Q ~,, ~) with the integer n being defined by 

n = R(u + v) (2.35) 

and lo+vo=v/n.  From ref. 1 we know that instead of the partition 
functions ~ ( z ,  g) we should consider 



Spin-l/2 XXZ Heisenberg Chain 933 

= Y z~E"("+"~(Q/"+~+k~+"~J~-~162 ) 

• ~{ E~,(~, + ~(Q/,, + ~,) - ko- ,,~j2_ ~2 }/4~(~ + ~ / /v  (y) 

= ~ -  t z , ~ ) =  "-~  (2.36) 

that is, we sum over all charge sectors modulo n, (2.35) If u(u+ v)/n = u/R 
is integer (i.e., u is a multiple of R), one can rewrite this expression as 
follows: 

Y 
w = O  

> ( { 2  Z { [ 2 u ( u + v ) v + u ( Q / R ) - - k v - - ( u W v ) R w ] 2 - - v 2 } / 4 u ( u + v ) l - 1 V ( f f ' ) }  

2u/R -- 1 

= ~ (2R~+k,k-em(Z) t2Rw+k,k+em(Z) (2.37) 
w = 0  

Comparing this with Eq. (2.30), one realizes that there are again differences 
of these partition functions that can be written as bilinear expressions in 
the characters (2.20) 

- -  ~ R ( u  + v -- Rg) 1,~ ~1 

u/R -- I 

= ~ ZRw, R~f-g)(Z)ZRw, R(y+g)(e) (2.38) 
W = l  

where now f and g are integers that satisfy the inequalities l ~ R f ~  
u + v -  1 and IRg[ ~<min{Rf-  1, u + v -  1 - R f } .  Here, the quantities are 
the finite-size scaling partition functions of minimal models with central 
charge c =  1 - 6 v 2 / L u ( u + v ) ]  in the sector R f  with boundary condition 
R2g, with g = 0  corresponding to periodic boundary conditions in the 
projected system. The unitary series is given by v = 1. Note that, as discussed 
above, c does not depend on the choice of R. As will be shown below, different 
values for R lead to different systems with the same central charge. 

In addition to these sectors there are sectors that occur only for 
certain rational values of m and partly also include the half-integer charge 
sectors of the Hamiltonian (2.11). In what follows, we limit our discussion 
of these possibilities to the R = 1 and R = 2 models (corresponding to the 

822/71/5-6-7 
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2R and 1R models of ref. 1, respectively). Let us start exploring the R = 1 
models. 

2.1.1. The  R = I  M o d e l s .  The unitary subset (i.e., v = l )  of the 
R = 1 series was discussed in ref. 1, where it was called the 2R-series. It 
represents the p-state Potts models with p = {2 c o s [ n / ( u +  1)]} 2. With 
n = u + v [see Eq. (2.35)] for general v, Eq. (2.38) just becomes 

2) " - :  = D , _ g ( z ,  ~)= f~f(z, ~)-f#~(z,  2) 

u- -1  

= ~. ~ , , :_g(z)  z , , :+g( i )  (2.39) 

for all values of u and 

l<<.f<<.n-1, I g [ < ~ m i n { f - l , n - l - f }  (2.40) 

These sectors (involving only integer charge sectors of the X : ( Z  Heisenberg 
chain) have the same structure as those obtained in ref. 1. 

By a closer inspection of Eq. (2.37) one realizes that one has the 
following possibilities to use half-integer values for k and Q in the partition 
function fr 2) of (2.36): For u even, k has to be integer and Q may be 
either integer or half-integer, for u + v even, k and Q have both to be integer 
or half-integer numbers, whereas for the case v even only k may be half- 
integer-valued and Q has to be an integer. Defining r = [1 - ( -  1)28]/4, one 
obtains as a generalization of Eq. (2.39) 

u - - 1  

= ~ Zr, y_g+~,(z) Zr, y+g+,,,(~) (2.41) 
r = l  

where now )7 and ~ take the values specified above and have to be chosen 
such that the conditions (2.22) are fulfilled. To decide if in this way we really 
get new sectors [remember that one has to fulfill the conditions (2.22)], we 
have a closer look at the sectors appearing in Eq. (2.41), beginning with the 
case u even. 

a. u Even. Here one can rewrite the sectors of Eq. (2.41) involving 
half-integer charges as 

~ ~ + ,/2(z, e) D}_,/e(Z, 5) = D:~2 s :(z ,  2) = (#~c- ,/2( z, 5) - : 
u - - 1  

= ~ Z . . . .  f _g (Z)  Z , , f+, (2)  (2.42) 
r = l  
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where now f and g are integers again. Clearly these sectors fulfill the condi- 
tions (2.22) if f and g satisfy Eq. (2.40) and one obtains new sectors in this 
way as long as u is not  equal to two. In this special case the sectors non-  
trivially coincide and one obtains the same characters f rom an even and an 
odd number  of  sites. This will be reflected by special features of  the finite- 
size spectra (see the discussion in Section 4.2 below), as already observed 
for the free chain case (see ref. 6). As an example, let us consider the simplest 
model  of  this kind, which is the nonuni ta ry  u = 2, v = 3 model  corresponding 
to a central charge of  c = -22 /5 .  The sectors of  Eqs. (2.39) and (2.42) are 

0 4 D~ = D ;  = ~ - f~o = (0, O) = ~,/2 - ~s/2 = D~ = D~ 

D~ = n 3 = ff~ -- if0 = ( _ �89 _ 1) = f~0/: _ ff~/2 = D~ = D~ 
(2.43) 

D~ = D 3 = N~ -- f41 = (0, -- 1-) 4 3 5 = c~ 1/2 -- ff 3/2 = D 9'/~ = D 4/2 

1 3 __ 1 D 31 = D 24 = (~ ~ - ~ ~ = ( - !,5 0 ) --~ ~ 1/2 - -  ~ 7/2  - -  D 4/~ = D a/: 

where we used the nota t ion (A .... Ar. , , )  for the produc t  of characters 
Zr : (z )z<s . (5 )  according to the highest weights of  the corresponding 
irreducible representations of the Virasoro algebra. As an example for the 
other  possibility, u # 2, let us look at the unitary model  u = 4, v = 1 with a 
central charge c = 7/10. Since n = u + v = 5 as in the example above, the 
structure of  the sectors is exactly the same, but one obtains 

D1 f ) 4  ( ~ 1  , ~ t  0 = 
0 = ~ 0  - -  ~ 0  - -  

D2 /33 _ ~2 c_ffo = 

D2 /-)3 ~2 (~1 

D 3  / -1 2  __ ( ~ 3  ( ~ i  
1 ~ 4 - - ~ 1 - - ~ 3  -~- 

0 0 0 4 - -  
D 3 / 2  = D 7 / 2  = ( ~ 3 / 2  - -  ~ 5,/2 - -  

D~ = D ~ o 3 _ = ~ 1/2 - -  ~ 5/2 - -  

(o, o) + (7, 7) + C ~) 
(~, 1) + (~, ~) + (~, _3) 

( 0 ,  3 7 ~) + (~, 3) + (~, 1) 

@o, -~) + (~, 7) + (}, o) 
(~, o) + (~, ~) + (o, 3) 

(~, k) + (~, ~) + (~, ~) 

(2.44) 

= - ~/~ - ( 2 ,  o )  + (3, -~) + (3_,5 

The half-integer charge sectors do not  coincide with any integer charge 
sector. 

b. u +  v Even.  Here we consider the case that both  f and ~ in 
Eq. (2.41) are half-integer numbers.  We obtain 

u--I 

= ~ Z, ,?_~(z)  Z,,?+g(2) (2.45) 
r = l  
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and therewith n e w  sectors if the half-integer numbers f and ~ satisfy the 
same relations as the integers f and g in Eq. (2.40). Here we take the u = 3, 
v = 1 model, which corresponds to the Ising model with central charge 
c --- 1/2, and the u = 5, v = 1 model, which corresponds to the 3-state Potts 
model with central charge c=4 /5 ,  (1) as two examples. From Eqs. (2.39) 
and (2.45) one obtains the following sectors for u = 3: 

Do ~ = Dg = ~ -  ~r = (o, o) + (~, ~) 
Dg = ajg _ .cr = 2. (~ ,  ~) 

D~=D~ =a3~-c~ =(0, �89189 (2.46) 
D 1 / z _ r ~ 7 / 2 _ c ~ a / 2  ce~/2 (~ ,  0) + (1 ,  �89 

1/2 - -  ~ 7 / 2  - -  ~ 1 / 2  ~ 5 / 2  ~" 

D7/2 _/~1/2 - -  (~7/2 :~5 /2  ( 0 ,  1~) + ( 1  1~) 
1/2 - -  ~ 7 / 2  - -  J 1 / 2  - -  ~ 3 / 2  ~--- 2 

and for u = 5 one has 

1 
D o = D g  =f#~o-r ~ 

D g =  D 4 = f g ~ - -  f9 ~ 

Dg =~g_~o 

D~=D~ = ~ - ~  
D~=D~ = ~ - ~  

4 2 
D I = D 5 = (~ 4 - fg ~ 4 

D 3 = D  3 =cB~--f#~ =(0 ,  

D1/2 _ r~11/2 _ ~1/2 cg7/2 = (~, 
1/2 - -  ~ 1 1 / 2  - -  ~ 1 / 2  - -  ~ 7 / 2  

D3/2 _ r~9/2 _ (g3/2 (gT/~ = (~, 
1 / 2 - -  ~ 1 1 / 2  - -  J 1 / 2  - -  ~ 9 / 2  

D9/2 _/~3/2 _ (~9/2 _ (.~7/2 = ( 0 ,  
1/2 - -  ~ 1 1 / 2  - -  ~ 1/2 ~ 3 / 2  

D U / 2 _  r~1/2 _ :~1~/2 c e 7 / 2 _  (~, 
1/2 - - ~ 1 1 / 2 - - ~ 1 / 2  - - ~ 5 / 2 - -  

= (o, o) + (-~, ~) + (~, z) 5 + (3, 3) 

= (~, k) + (4~, ,5) + ( ~ ,  21 ~ ) + ( ~ ,  ~) 

= 2 . (} ,  ~)+ 2, (~ ,  ~)  

= (o, ~) + (-~, 1~) + (~, ~) + (3, ~) 
= (~, ~ )  + ( 1 ,  ~ )  + ( ~ ,  ~o) + ( ~ ,  ~) 

= (~, o) + (~, ~) + (~, z) 5 + (2, 3) 

3 ) +  (~, ~)+ @ ~)+ (3, O) 

~ )  + (~ ,  4oJ - ~3, 

o) + (~, ~) + (~, -}) + (~, 3) 
1 2 7 21 ~) + (~, ~) + (~, ~ )+  (3, ~) 
~) + (4~, • 21 ,~ + (~, ~) + (~, ~) 

(2.47) 

DI/2 _ nu/2 _ ~,/2 _ :~9/2 = (?, O) + (~, 2) I ~/2--~/~ --~/~ -~/~ , + (~o, ~)+ (~, 3) 
21~.a_ (7 r~1,/~_ n1/2 _ ~e11/2_.:/~_ (0, ~)+ (-~, ~,. ,~, ~)+ (3, ~) 

3/2 - - ~ 9 / 2  - - - - 3 / 2  : 5 / 2 -  

H e r e ,  not only are the half-integer sectors as such new (i.e., the c o m b i n a t i o n  

of the various building blocks contributing to it), in addition they are built 
by contributions from so far unknown spinor fields with anomalous dimen- 
sions (A, zT) as given in (2.46) and (2.47). The  partition functions of the 
form Dg/2 are special insofar as the sector in the X X Z  Heisenberg chain 
from which they are obtained splits into two subsectors with eigenvalue 
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C =  _+1 of the charge conjugation operator C, (2.9). This symmetry is not 
used in the projection mechanism and is presumably the reason why these 
partition functions contain each contribution twice. 4 We will return to 
these models later when we study the corresponding finite systems. 

c. v Even. In this case one would expect new sectors appearing for 
half-integer values o f f  in Eq. (2.41), but this is not the case, due to the 

(~ k • n/2 [7  identity ~Q ,_, 2) - f r  ~), which follows simply from the fact that 
(n/2)(lo + re) = v/2 is an integer. 

2.1.2. The  R = 2 M o d e l s .  Here the unitary subset v = 1 discussed 
in ref. 1 (called 1R models there) corresponds to the low-temperature 
O(p) models (19'~~ with p = 2 cos[rc/(u + 1)]. We have to investigate u even 
and u odd separately (u odd was not discussed in ref. 1), as we can use 
Eq. (2.37) for u even only, i.e., for n = 2(u + v)--2 rood 4 (since v has to be 
odd)~ Now Eq. (2.38) reads 

2f  - n - - 2 f  - 2 f  ~ 4 g ( Z ,  - -  ~ 2 } ( Z ,  D4g(Z, z ) :  D._4g(Z, z ) :  ~) ~) 
u/2 1 

= ~, Z2wn(f_g)(Z) Z2w,2(f+g)(5) (2.48) 
w = l  

There are, however, additional sectors besides these. But only integer charge 
sectors contribute here, since, although one can form bilinear expressions 
in character functions from the partition functions of the half-integer 
charge sectors, these involve negative multiplicities, which we do not want 
to consider in our present discussion. For completeness, we will briefly 
state the relevant equations. 

a. u Even. One obtains the following expression for the f~(z ,  2) of 
(2.37) in terms of the functions Or, s(z) of (2.21): 

u/2 - 

d = l - - ~  

u/2 - 1 

+ ~, f2--(e+2d),k--Q/Z+,(~+~)(Z)g2--te+2d),k+Q/2+,(~+v)(Z) (2.49) 
d=O 

where ~/= [ 1 - ( - 1 ) Q ] / 4  and ~=  [1-- (--1)k]/2 { ( =  I-1--(--1)k+Q]/2} if 
U --: 0 rood 4 (u - 2 rood 4), respectively. From this, one gets in generaliza- 
tion of Eq. (2.48) the sectors 

o 2 f  + r o ( _  - 2f+o9 - - ( g ( 4 g + t ) / 2 + e ( ( 2 ~  ~ (2.50) 
4 g + t  ,Z,  _7) = ( f f 4 g + t ( Z  , Z) ~ 2 ( 2 f + e o ) + t ( u + v )  ' " '  ~1 

4 We did not check this assumption. 
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with co ~ {0, 1 }, t s {0, 1, 2, 3 }, and e = ( -1 ) ("+  ~+ ~)/2. In terms of character 
functions, they have the form 

u/2 1 

D~(z, 5 )=  ~ Z~+2a, k-Q/2+,(,+~)(z)Zr (2.51) 
d = l - - ~  

For physical sectors, of course, the character functions which enter on the 
right-hand side of Eq. (2.51) have to comply with the conditions (2.22), 
taking into account the periodicity properties of the character functions 
X~,~(z, 5) in the indices r and s. 

b. u Odd. Although, as mentioned above, Eq, (2.37) does not apply 
for odd values of u, one can construct R = 2 models in this case, too. 
However, one has to consider new partition functions ~ ( z ,  5) which are 
the sums of two sectors (q~, 

~ ( z ,  5) = N~(z, 5) + ~+"/2(z ,  5) (2.52) 

in order to obtain suitable expressions. Following the same procedure 
which led to Eq. (2.37) yields 

,u, VE~ 

X 5 { [u (u+v)#+ (u/2)Q--kv-- (u + v)v]2--v2}/4u(u+v)I 1 v ( ~ ) }  

u--l. 

= ~ f2w+k.k_e/2(Z) f2w+k,k+e/2(5 ) (2.53) 
w=O 

Hence, the new partition functions ~ ( z ,  5) are in fact the same as the 
sectors ~ / 2 ( z ,  5) [see Eq. (2.37)] of the corresponding R = 1 model with 
n = u + v. Of course all the equations obtained there translate to the present 
case. 

2.2. The L - M o d e l s  

Similar to the R-models, we define the L-models by 

L z rn m + l  1 
h 4 m + 1' 7 = 1 - L2--- ~ ,  lo + Vo = Lm (2.54) 

where in what follows L will be integer-valued again and h < L2/4 for all 
possible values of m. 

Let us commence by considering irrational values of m. The finite-size 
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scaling partition functions ~-~(z, Z) of (2.26) in this case are given by 
(2.18), 

~ ( z ,  ~) = ~ z~-~-o/~,~-*Hv(z) i~-~+e/~,~-~Hv(i) (2.55) 
v E Z  

The character functions (2.19) are now recovered through 

DLL{'g(Z, i)=ff~(g(Z, 5) -- o~LL~f(Z, Y)= ~ ZL(f+g~,L~(Z)ZL(Z-g),L~(Y) (2.56) 
S ~ 1  

where again f and g are integers with f > 0  and - f < g < f  As in the 
case of the R-models, the vacuum representation is included in this set for 
L = 1 only, and the modular invariant partition function din(Z, ~) of (2.32) 
for L = 1 (in terms of the sectors defined above) is given by the same 
expression (2.33) as for the R = 1 models. 

We now switch to rational values of m = u/v with coprime positive 
integers u and v again. Equation (2.54) becomes 

L 2 u u + v  v v 
. . . .  , . . . .  (2.57) h= 4 u+v '  7 = 1  Leu l~176 Lu n 

and the integer n [cf. Eq. (2.35)] is given by n =Lu. Once again we define 
k in the same way as in Eq. (2.36). If u(u + v)/n = partition functions NQ 

(u +v)/L is an integer (i.e., u + v is a multiple of L), these can be rewritten 
as follows [cf. Eq. (2.37)]: 

2(u + v)/L -- i 

y Lw k(Z) (2.58) 
w = 0  

and one obtains expressions bilinear in the characters (2.20) by 

D L s  Z ) =  i l L ( u - f )  (Z  7~ 

(u + v)/L -- 1 

= ~ ZL(f+g),Lw(Z) ZL(F-g),L~(Z) (2.59) 
w = l  

where f and g are integers satisfying 1 ~< L f ~  u - 1  and I Lg[ 
m i n { L f -  1, u - 1 - Lf}. 

We now proceed by investigating the additional sectors that occur for 
the L =  1 and L =  2 models (corresponding to the 2 r and 1L models of 
ref. 1). Note that since the range of h in (2.12) in the XXZ chain is limited 
to h 1-> 1/4, the L = 1 models cannot be realized in the finite-size spectra of 
the J(XZ Heisenberg chain. 
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2.2.1.  T h e  L = I  M o d e l s .  The unitary subset ( v = l )  discussed in 
ref. 1 corresponds to the tricritical p-state Potts models, p = [2 cos(n/u)] 2 
(2L-series). Again the structure of the sectors obtained in ref. 1 is identical 
to what one obtains from Eq. (2.59) for v not restricted to one but integer 
charge sectors only. Using n = u for L = 1, the sectors read 

D f  (z, Y) = ~- f D._g(z, e )  = e )  - e )  

u + v - - 1  

= E Z f + g , s ( Z )  Z f - - g ,  s (~ )  ( 2 . 6 0 )  
s = l  

for any value of u + v and 

l<<,f<~n-1,  ] g [ < ~ m i n { f - l , n - l - f }  (2.61) 

Again we want to include half-integer values for k and Q. Let 
z =  [ - 1 - ( - 1 ) 2 g ] / 4  as in Eq.(2.41). One obtains as a generalization of 
Eq. (2.60) 

D;(z,  ~) " ? ~)= ~;(z ,  ~) "~+~"" 2) = D , _  g(z, - ' ;~f+ zntZ, 
u + v - - I  

= ~ gr,?--~+z,(Z) gr,?+~+~,(~) (2.62) 
s = l  

In this equation,)7 is integer and ~ integer or half-integer if u and v are both 
odd (i.e., for u + v even); for u even and v odd, )7 and ~ have to be both 
even or odd, whereas in the case of an even value of v, ~ has to be an 
integer ( f  possibly being half-integer). We again consider these three cases 
separately. 

a. u + v Even. Consider the sectors of Eq. (2.62) with half-integer 
charge. They are 

--g D,/2_f(z ,  2) = n ,  + g (,z ~) ~) __ 
�9 - ' . 1 2 + s , - ,  = 

u + v - - 1  

= ~ Xf+g, ,+,_ , (z )  Zf_g.~(~) (2.63) 
s = l  

where f and g are integers which comply with Eq. (2.61). Here one always 
obtains new sectors, since there is no possibility to have u + v = 2, which 
would be the analog of the case u - 2  for the R = I  models 
[cf. Eqs. (2.42)-(2.43)]. 

As a simple example we consider the case u = 3, v = 1 with n = 3, 
which is a model with central charge c = 1/2. One has 

Do ~ = D2 = ff~o -- fr176 = (0, 0) + (~ ,  k )  + (�89 �89 
(2.64) 

DO _ r )0  _ ~ o  _ 1/2 - -  ~ 5 / 2  - -  ~1 /2  ~2/2  = ( 2 '  0 )  "~- (1~'  ~6) "~ (0,  �89 
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and one realizes that taking into account the half-integer charge sectors, 
one obtains the operator content of the Ising model but with a different 
distribution of operators into sectors. For  instance, the leading thermal 
exponent is 1/8 for this model, whereas it is 1 for the Ising model which is 
realized as the corresponding R = 1 model [-see Eq. (2.46) and ref. 1 ]. 

b. u Even.  The sectors with half-integer values o f f  and ~ are given 
by [cf. Eq. (2.62)] 

D ~ _ f ( z , y ) = n  "+~ tz s - c5/{_ g) . - ' . /2  + 7 , ,  = ~ r  ~ ) -  ~ (z ,  

u + v - - 1  

= ~ Z?+~,,+~_,(z)  z?_~,,(~) (2.65) 
s = l  

which again are new sectors compared to Eq. (2.60) provided the half- 
integer numbers y and ~ fulfill the same relations as f and g in Eq. (2.61). 
There is one exception: the models with u = 2  (n=2) ,  which, due to 
Eq. (2.61), consist of the sector D~(z, f )  alone. 

To give an example for this class of models we consider the case u = 2, 
v = 3 (hence n = 2), which corresponds to a central charge c = -22/5.  The 
only sector is 

D o ~ = ~ _ ( r  0 ) + 2 - ( - � 8 9  -�89 (2.66) 

As an example for a model with new sectors we choose u = 4 ,  v =  1 
( n = 4 ,  c=7/10) ,  which corresponds to the tricritical Ising model. ~ We 

Do ~ Do 3 ~ o 

O~ 2 o = ~o- fr 

0 2 0 2 _ 2 1 

obtain 

= (0, o) + (,~, �89 + (~-,~ ~) + (~, ~) 
= 2 . ( ~ , ~ ) + 2 - ( 7 ,  7) 

= (~, o) + (~, ~) + (~, ~) + (0, ~) 

,/2 - - 7 / 2  = - , / 2  - - ~ / =  = , ~ ) +  ( ~ ,  16 
3-) -,/2~/2 _- -~/2~'/2 = ~,/2~'/2 _ ~/2~'/2 = ( ~ ,  o) + (~, ~) + (~, ~) + (~,~ 

(2.67) 

which defines a model which differs from the corresponding R = 1 model 
[cf. Eq. (2.44)]. 

c. v Even. At last we again turn to the case of even values for v. As 
for the R = 1 models, there are no new sectors for half-integer values o f f  
in Eq. (2.62) because these do not result in new boundary conditions, due 
to the identity (k + u/2) l o = klo + v/2 =- k l  o rood 1. 
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2.2.2. The L = 2  Models .  As above, the discussion of the L = 2  
models is analogous to that for the R = 2 models. The unitary subset 
corresponds to the O(p) models, p = 2 cos(~/u). Only the integer charge 
sectors for uodd  ( v = l )  were discussed in ref. 1 (1L-models). If u+v  is 
even, Eq. (2.58) applies and from Eq. (2.59) one finds 

2f D4g(z , z) =/)2(u-f)  g,'z ~) 2f 

(u+ v)/2 1 

= 2 Z 2 ( f+  g),2w(Z) Z2(f--  g),2w(~) ( 2 . 6 8 )  
w = l  

Additional sectors are obtained as follows. 

a. (u+  v) Even. 

(u + v)/2 -- 

2 
d = l - - ~  

One obtains 

Ok + e/2 +,. ,  r + 2a(z) Ok Q/2 +,..~ + 2d(e) 

+ 
(u + v)/2 -- 1 

d=O 
s (r Ok-e/z+,,,-(r (2.69) 

where r]= [ 1 -  ( -1 )Q] /4  and ~=  [ 1 - ( - 1 ) k ] / 2  {4= [ 1 -  (--1)k+Q]/2} 
for u + v = 0 mod 4 (u + v = 2 mod 4), respectively. The following additional 
sectors appear: 

DZf+~t, - 2f+~o ~] ~ ( 4 g + t ) / 2 + e ( ( 2 ~  5 )  (2.70) 
4 g + t ~ ' Z ) = ~ 4 g + t (  Z' 1 - -  2(2f+eg)+tu k ' 

for e0~ {0, 1}, t~ {0, 1, 2, 3}, and ~= ( - 1 )  (u+~)/2. They are given as a 
bilinear expression in Virasoro characters as follows: 

(u + v)/2 -- 1 

D (z, 5)= 
d = l - - ~  

Zk+Q/2+,,,r Xk_Q/2+,,,r (2.71) 

Of course, the character functions that enter in Eq. (2.71) have to comply 
with the conditions given by Eq. (2.22) in order to obtain physical sectors. 

b. (u + v) Odd. Here one again has to combine two sectors ~ ( z ,  5) 
as in the R = 2  case [cf. Eq. (2.52)]. The partition functions a3~(z, 5 )=  
~ ( z ,  ~) + ~ek +.~ k ~Q ~z, ~) coincide with the sectors f#Q/2(z, ~) [see Eq. (2.58)] 
of the corresponding L = 1 model with n = u. 

This completes our discussion of the projection mechanism in the 
finite-size scaling limit. We now turn our attention to chains of finite length 
N and to their spectra. 
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3. PROJECTION MECHANISM FOR FINITE SYSTEMS 

We commence this section by explaining the sense in which the projec- 
tion mechanism which we so far have only established for the continuum 
limit can also be applied to finite systems. For this purpose we try to give 
a meaning to differences of partition functions for a finite number of sites N. 

Consider a general sector 

D~(z, ~)= N~(z, ~ ) -  N~',(z, ~) (3.1) 

The finite-size analog of this equation is 

DkQ(z, e, N) = fgkQ(z, s N) -- (r ~, N) (3.2) 

where the ~ ( z ,  s N) are defined 5 by summing up the finite-size partition 
functions g ~ + , u ( z , i ,  N) of (2.26) with the appropriate value of n. We 
want to interpret the function D~(z, ~, N) defined by Eq. (3.2) as the 
partition function of a projected system. This can be done provided that 
any level which contributes to the partition function N~,(z, f, N) has a 
correspondent in (q~(z, s N), i.e., for any eigenstate of the XXZ Heisenberg 
chain contributing to ~q~,(z, g, N) there is at least one eigenstate with the 
same energy and momentum which contributes to fiB(z, ~, N). In this ease 
the difference D~(z, ~, N) of the two partition functions ~r ~, N) and 
N~,(z, ~, N) is the partition function of a system consisting only of those 
states which are left over if one eliminates all the degenerate doublets 
with one state in each sector. Denoting, in analogy to the notation of 
Appendix A [cf. Eqs. (A.8) and (A.14)], the set of all pairs of energy and 
momentum eigenvalues 6 that contribute to ~f~(z, g, N) by fib(N), the 
condition means that the sets ff~(N) and ~ , ( N )  should satisfy the 
inclusion 

ff~(N) ~ ff~',(N) (3.3) 

If this is true, the projection mechanism therefore actually defines a finite- 
size model (in the sense that it determines the spectrum) as long as we are 
in the physical region h ~> 1/4 [see (2.12)] of the XXZ Heisenberg chain. 

5 This is true for minimal models; of course the generic case would be obtained by replacing 
~ by 8~ throughout this section. 

6 There is a small difference from the definitions used in Appendix A since we subtracted a 
suitably chosen ground-state energy throughout Section 2. For obvious reasons, however, 
this does not affect the arguments for degeneracies of eigenvalues of finite chains. But note 
that the index k denotes different boundary conditions depending on the type of model 
considered, whereas in Appendix A the boundary condition for ~ ( N )  is given by ~ = q2X 
[cf. (A.5)]. 
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This condition is fulfilled for all R-models and for the L > 1 models where 
h ~> 1/4 if m >t 1/(L 2 - 1), but it for instance excludes all L = 1 models. 

In Appendix A we establish intertwining relations between charge sec- 
tors of the X X Z  Hamiltonian with different toroidal boundary conditions 
using powers of the quantum algebra generators of Uq[sl(2)] [the corre- 
sponding representation on W(N) is given by Eq. (A.2)]. Analogous 
intertwining relations hold for the corresponding translation operators 
(2.4). These relations allow us to obtain inclusion relations for the sets of 
simultanous eigenvalues of the Hamiltonian and the translation operator of 
the form (3.3). The main results obtained in Appendix A are Eq. (A.10) for 
generic values of q and Eq. (A.13) if q is a root of unity. We proceed by 
having a closer look at the R- and L-models separately. 

3.1. The R-Models  

For the R-models, the connection between the anisotropy 7 and the 
boundary condition is determined by the equations [cf. Eqs. (2.28) and 
(2.29)] 

( m) 
q= -exp( - i r t~ )=exp  ircR2(m + 1) 

(2 ik_  
~(k) = exp[2rcik(lo + vo)] = exp \ R ( m  + 1)J 

(3.4) 

where m and k are arbitrary. It follows that 

o~( k ) = e2'~k/ R q 2Rk (3.5) 

The phase factor in Eq. (3.5) is equal to one if k is an integer multiple of 
R. In this case one obtains with k = Rf, f integer, the relation 

~(Rf )  = q - 2R2s (3.6) 

i.e., if k =  Rf, then the corresponding value of K in the notation of 
Appendix A would be K = - R 2 f = - R k .  Comparing now the inclusion 
relations given in Eqs. (A.10) and (A.13) (choosing K =  -R2fand  Q = R2g 
with integers f and g fulfilling 0 ~<[gl ~< If  I) with the sectors (2.31) [respec- 
tively (2.38)], one immediately realizes that that for all R-models and all 
the sectors considered the inclusion relation (3.3) is fulfilled and thus the 
projection mechanism extends to finite chains. 

We now focus on the minimal case, i.e., rn = u/v with positive coprime 
integers u and v. In Section 2 we explicitly obtained additional sectors for 
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the R =  1 (Section 2.1.1) and the R = 2  (Section 2.1.2) models. In ref. 1 it 
was observed numerically that in the case of the unitary minimal series 
(i.e., v=  1) for the R = 2  models 7 only part of the sectors given in 
Eqs. (2.50)-(2.51) show the degeneracies (3.3). In particular, this is true for 
all sectors D~(z, ~) of Eq. (2.51) with ~ =0,  which are the sectors D~(z, 2) 
with even k (even k + Q) for u -  0 mod 4 (u = 2 rood 4), respectively. 

To understand these observations, let us consider values of u which 
are multiples of R, i.e., u - 0 m o d R .  This gives q-+R(u+v)=(--1)~/R and 
hence Eq. (3.5) can be modified as follows: 

c~(k ) = ( - 1 )~m e2~ek/Rq -2(Rk +_ R(u + v)/2) (3.7) 

This means that if u/R is even, i.e., u--=0mod 2R, one obtains as a 
generalization of Eq. (3.6) for k = Rf, f integer, the equation 

~(Rf )  = q -  2R27= q _ 2(R27_+ R(, + ~)/2) (3.8) 

Analogously, if u/R is odd, i.e., u --= R mod 2R, one obtains with k = R f  in 
addition to Eq. (3.6), but now for half-integer values off (i.e., 2f is  an odd 
integer), the relation 

~( R f  ) = - q  - 2R2Y = q -  2(~27_+ R(~+ ~)/2) (3.9) 

The inclusion relation (A.13) with K = - R 2 f + _ R ( u + v ) / 2  and 
Q = R2~ ++_ R(u + v)/2 now results in the relation 

R? R~ 
fg R2~ +_ R(~ + ~)/2( N) ~ f~ R2? + R(,, + ~)/2( N)  (3. i0) 

with appropriate values o f f  and ~. From this one deduces that in fact a// 
the additional sectors [see Eqs. (2.42) and (2.45)] for the R =  1 models 
show the degeneracies (3.3), whereas for the R = 2 models this is true for 
all sectors D~(z,  ~) of (2.51) with even values of k if u = 0 m o d  4 [respec- 
tively for all sectors D~(z,  ~) of (2.51) with even k + Q if u = 2 rood 4] (for 
arbitrary value of v). 

3.2. The  L - M o d e l s  

The discussion of the L-models is completely analogous to that of the 
previous section on the R-models. One should keep in mind that results on 
the finite-chain spectra only apply if h ~> 1/4 [see (2.12)]. The connection 
between the anisotropy y and the boundary condition is given by (2.54) 

7 Remember that these are the 1R models in the notation of ref. 1. 
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and hence 

/ r n + l ~  
q =  - e x p ( -  i7~7) = ex p ~i~ -~-5-~-m ) 

(2r~ik) 
~(k) = exp[27:ik(lo + v0)] = exp k. Lm / 

(3.11) 

e( k ) = e - 2~ik/ L q2Ck (3.12) 

Considering values of k which are integer multiples of L, i.e., k = Lf, f 
integer, one obtains 

~(Lf )  = q 2L2y (3.13) 

i.e., the corresponding value of K in the notation of Appendix A would be 
K = L 2 f = L k .  Again, the inclusion relations (A.10) and (A.13), now with 
the choices K = L 2 f  and Q.=L2g (f, g integers fulfilling 0<~ Igl ~< I f  I), 
guarantee that all for all sectors given by Eqs. (2.56) [respectively (2.59)] 
the projection mechanism can be applied for finite-size systems. 

Finally, we again consider the minimal case m = u/v, where u and v are 
coprime positive integers. Here we consider models where u + v = 0 mod L. 
Using q_+Lu= ( _  1)(u+~)/L, one can modify Eq. (3.12) as follows: 

u(k) = ( - 1)(u + o)/L e -  2nik/Lq 2(Lk_+ Lu/2) (3.14) 

If (U + v)/L is even, i.e., u + v - 0 rood 2L, one obtains for k = Lf, f integer, 
the expression 

~(Lf )  = q2r2?= q 2(L27 +- c,/2) (3.15) 

whereas if (u + v)/L is odd, i.e., u + v --- L mod 2L, substituting k = L f  with 
half.integer values o f f  into Eq. (3.14) yields 

c~( L f ) = - q  2Lzf = q 2( z 27 + L~/2 ) (3.16) 

We now use the inclusion relation (A.13) with K=LEf+_Lu/2  and 
Q = L2~, 4-Lu/2 and obtain the relation 

L# 
~ L 2Lf • L . /2 (N)  ~ ~ LT  +_ Lu/2(N) (3.17) 

where againsTand ~ have to be chosen appropriately. For the L = 2 models 
(note that the L = 1 models all have h < 1/4), one finds the following 
behavior. The sectors D~(z, 2) in Eq.(2.71) possess the finite-size 
degeneracies (3.3) if r = 0, which means if k (k + Q) is even for u + v = 0 
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rood 4 (u + v = 2 rood 4). This proves and extends the numerical results of 
ref. 1. 

Let us summarize the results of this section. We explicitly derived all the 
degeneracies observed numerically in ref. 1 using the results of Appendix A. 
In fact, there is a lot more information in our equations. In particular, we 
could show that for the R = 1 models all sectors (including those with half- 
integer charges) show the required degeneracies (3.3) to define a finite-size 
model. In ref. 1 it has been shown (by numerical comparison) that the 
spectrum of the R = 1 model with u =  3, v = 1 (central charge c = 1/2) is 
exactly that of the Ising quantum chain and that the R = 1 model with 
u = 5, v = 1 (c --- 4/5) reproduces the spectrum of the 3-state Potts quantum 
chain (see ref. 21 and references therein), in both cases with toroidal 
boundary conditions. In the next section we address the question of what 
the new sectors in these R = 1 models correspond to in the Ising and 3-state 
Potts quantum chains. 

4. INTERPRETATION OF THE NEW SECTORS 

4.1. New Boundary Conditions for the Ising and 3-State Potts 
Quantum Chains 

In this section we discuss the significance of the new half-integer 
charge sectors in the projected systems and show that they are related to 
a new kind of boundary condition in these models. Before we do so we 
want to make the problem at hand more precise by reminding the reader 

k and of the relation between the labels k and q in the partition functions Oq 
the projected systems to which they correspond. 

As an example, consider the two-dimensional Ising model on a torus. 
In the extreme anisotropic limit it is described by the lattice 
Hamiltonian ~22) 

M 

H = - � 8 9  Z (a)*+2a;a;+~)  (4.1) 
j = l  

Here, M represents the number of sites and 2 plays the role of the inverse 
temperature. In the thermodynamic limit M--* ov the model has a critical 
point at 2 = 1, where it is described by a conformal field theory with central 
charge c =  1/2 (a Majorana fermion). The Ising model has a global 7/2 
symmetry (the spin-flip operation); as a consequence H commutes with the 
operator 

M 

S =  IF[ cr~ (4.2) 
j = l  
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with eigenvalues S = +_ 1 splitting H into two sectors, one of which is even 
under this operation (S=  1), the other one odd (S=  -1) .  On the other 
hand, it is known that for quantum chains whose group of global sym- 
metries is of order n, there are also n different types of toroidal boundary 
conditions, i.e., boundary conditions compatible with the geometry of a 

z _ z torus. (23) Here n = 2 and one has periodic boundary conditions (aa~+ 1 - ~1) 
and antiperiodic boundary conditions (a~t+l = - ~ ) .  In the two-dimen- 
sional model from which H is obtained the latter correspond to a seam of 
antiferromagnetic bonds in an otherwise ferromagnetic system. The choice 
of boundary conditions is reflected in the structure of the translation 
operator in a very intuitive way: With periodic boundary conditions, (4.1) 
commutes with the translation operator 

M - - 1  

T= ]-I Ps (4.3) 
j = l  

with Pj defined in (2.4). On the other hand, in the case of antiperiodic 
boundary conditions an additional spin-flip operation at the boundary is 
necessary in order to construct a commuting translation operator T': 

T'= T ~  (4.4) 

One finds T M= 1 and T 'M= S. 
To conclude this short reminder of the Ising quantum chain, let us 

denote the eigenvalues of (4.t) by e~is, l =  0 ( l=  1) in the even (odd) sector, 
l ' = 0  ( l ' = 1 )  for periodic (antiperiodic) boundary conditions, and 
j = 1,..., 2 M- 1 according to the number of states in these sectors. 

k As already noted, the numbers k and q in the partition functions Dq 
of the projected systems label the sectors of these models according to their 
internal global symmetries and the type of toroidal boundary condition 
imposed on the systems. The discussion of the R = 1 model with u = 3 and 
v -- 1 in Section 2 in the thermodynamic limit M ~ oo amounts to the state- 
ment that at the critical point 2 = 1 the projected sectors (2.46) of the XXZ 
Heisenberg chain coincide with the sectors described here (in the limit 
N ~ ce). In particular, the levels contributing to D~ are the scaled energy 
gaps gOo;s [here gtllj = M/2rc(eSij-e~ to D2o contribute g01;j and ~lo;j, which 
are degenerate, and to D12 contribute gl;s. 

This raises the question: To which boundary conditions and sectors of 
nl/2 and n7/2 of Eq. (2.46) correspond? The the Ising model do the sectors ~1/2 ~1/2 

existence of these sectors is actually surprising, as the spin-flip symmetry 
allows only for the periodic and antiperiodic toroidal boundary conditions 
for H discussed above and therefore no new toroidal boundary conditions 
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should be expected. This observation allows us to formulate the problem: 
One has to find an additional symmetry of the Ising model and the corre- 
sponding boundary conditions which give the spectrum corresponding the 

r)1/2 and r)7/2 of (2.46). 8 sectors ~ 1/2 ~ 1/2 

In order to answer this question, we note that even for finite systems 
the scaled energy gaps g~iJ of the Ising Hamiltonian with M sites are identi- 
cal to those scaled energy gaps of the X X Z  Heisenberg chain with N = 2M 
sites which contribute to the integer charge sectors Dq ~ of (2.46). The reason 
for this important observation is studied in refs. 24-26 and we do not 
repeat the discussion here. In ref. 26 we construct lattice Hamiltonians for 
the lsing and 3-state Potts models which have the spectrum contributing to 
the new partition functions of the X X Z  Heisenberg chain with N = 2 M -  1 
sites (see below). Given these Hamiltonians, we can analyze their sym- 
metries and the physical significance of the boundary conditions involved. 

4.1.1. Ising Model .  A Hamiltonian such that its scaled energy gaps 
coincide with those obtained through the projection mechanism from the 
normalized X X Z  Heisenberg chain (2.11) with q = -exp(#c/4), ~ = -q -2 k ,  
and N =  2 M -  1 sites 9 is given by (26) 

with 

2 M - -  1 

/ t = -  ~ (ej-�89 (4.5) 
j = l  

e2j_l = �89 + o-~), e2j= �89 + a}a~+l) (4.6) 

y z 
elM_ 1 - - =  �89 _+ O'Mal) (4.7) 

where 1 ~< j ~ M -  1. Here H is an Ising Hamiltonian acting on a chain of 
M sites with a boundary term y z _+aMa ~. Note that, as opposed to periodic 
and antiperiodic boundary conditions as well as to the "generalized 
defects" investigated in ref. 27 (which include boundary couplings of the 

y z form aMal),  there is no operator aM present. To the best of our knowledge 
this type of boundary condition has not yet been studied in the literature. 
The spectrum o f / 1  leads to the partition functions (2.46) for half-integer 
charge sectors. The highest weight representations of the Virasoro algebra 
(0, 1/16), (1/16,0), (1/2, 1/16), and (1/16, 1/2) contributing to these 
partition functions represent the anomalous dimensions of some new 
spinor fields. 

The two different signs in the boundary term amount to complex 

8 The Ising Harniltonian (4.1) is also invariant under a parity operation, but this is of no 
importance to the present discussion. 

9 The scaling factor N/2z~ in (2.15) has to be changed into M/n if N= 2M-1. 

822/71/5-6-8 
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conjugation. Since the Hamiltonian (4.5) is Hermitian, the corresponding 
spectra are identical. This is indeed observed in the projected spectra: 
The eigenvalues of the XXZ Heisenberg chain contributing to the sectors 
D1/2 and r~7/2 respectively, are related through complex conjugation of 1/2 ~ 1/2, 
the boundary angle e in (2.1). Since for the choice of q and e under con- 
sideration the XXZ Heisenberg chain is Hermitian and all eigenvalues are 
therefore real, the two spectra are degenerate. 

In order to understand the symmetry from which the new boundary 
conditions arise, we go back to the standard Ising model defined by the 
Hamiltonian (4.1). First we want to stress again that the eigenvalues of H 
in (4.1) with M sites and 2 = 1  are obtained through the projection 
mechanism from the XXZ Heisenberg chain (2.1) with N = 2 M  sites. The 
eigenstates of the XXZ Heisenberg chain are also eigenstates of the trans- 
lation operator (2.4), which has 2M different eigenvalues of the form 
exp[(2nik+in(~)/2M], 0~<k~<2M-1.  As shown in Appendix A, the 
projected eigenstates of (2.1) remain eigenstates also of (2.4). On the other 
hand, the translation operators (4.3) and (4.4) of the Ising model have only 
M different eigenvalues of the form exp[(2nik + inl)/M], 0 <~ k <~ M -  1 
(with l=  0, 1, depending on the sector). From this observation we learn 
that T and T' of the Ising model (4.1) are not the equivalent operators tO 
the translation operator T(c~, 2M) of the XXZ Heisenberg chain, but that 
they correspond to T2(e, 2M). Technically speaking this means that on the 
projected subspace of the XXZ Heisenberg chain under consideration the 
translation operators T and T' are not representations of the translation 
operator T(e, 2M), but os its square T2(~, 2M) 1~ But since the projected 
eigenstates are also eigenstates of T(e, 2M), we have established the 
presence of an additional symmetry in the Ising model besides the ~2 
spin-flip symmetry and translational invariance. 

The physical meaning of the  symmetry generated by T(e, 2M) in the 
projected system can be understood by studying its representation D in the 
Ising model. One finds that D satisfies (25'26) 

Dej,=ef +iD (4.8) 

where the ej,, 1 ~<j' ~< 2M, are defined as in Eq. (4.6) by extending the range 
of j to 1 ~<j~< M. This is the duality transformation D (see Appendix B). 
We conclude that the additional symmetry we found is duality, which, at 
(and only at) the self-dual point 2 = 1, is indeed a true symmetry: If 2 = 1, 
the duality relation (B.3) becomes 

HD(1)=DH(1)D 1 = H(1) (4.9) 

m This explains why we had to neglect macroscopic momenta n in the spectrum of the X X Z  

Heisenberg chain to get the momenta in the Ising chain 
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Since D e corresponds to translations (see Appendix B), we can say that 
duality is the "square root" of translations. Obviously, not only the standard 
Ising Hamiltonian (4.1), but also H (4.5) commutes with the duality trans- 
formation (in an appropriate representation/3). 11 

Having found an additional symmetry in the Ising model at its self-dual 
point and the Hamiltonian (4.5) giving rise to the new sectors discovered 
through the projection mechanism, we can look for an explicit representa- 
tion of the translation operator commuting with (4.5). As in the standard 
case of periodic and antiperiodic boundary conditions, this sheds light on 
the physical meaning of the boundary conditions. One finds, corresponding 
to the two possible choices of the sign in e2~,_ 1, the translation operator 

and its complex conjugate T* commuting wi th /~  a n d / t * ,  respectively, 

i'~-- TE2M_ 2 g2M-- 1 (4.10) 

with T given in (4.3). The operators gj are related to the duality transfor- 
mation (B.4) and defined by 

1 - - i  1 - - i  
g2M-2=--- - -~-(1-- i t r~t  lO'~/), g2M-1-  2 (1--itr~t) (4,11) 

A straightforward calculation shows that the Mth power of 7" is the duality 
transformation in each sector (see Appendix B). This clarifies the meaning 
of this type of boundary condition: 7" performs the local equivalent of the 
duality transformation at the boundary in addition to a pure translation. 
The Mth  power of T gives the symmetry operator to which the boundary 
condition is related. This exhibits its relation to the duality symmetry in the 
same way as the existence of the spin-flip symmetry resulted in the existence 
of the translation operator T' acting locally at the boundary as spin-flip 
operator times a global translation [cf. also the translation operator (2.4) 
for the X X Z  chain with toroidal boundary conditions ]. 

4 . 1 . 2 .  3 - S t a t e  P o t t s  Mode l .  The 3-state Potts model is obtained 
from the R = I  series with u = 5  and v = l .  The discussion of the new 
boundary conditions here is in complete analogy to the previous discussion 
of the Ising model and we state only the results. 

Taking the extreme anisotropic limit of the transfer matrix of the 

11 Strictly speaking, this statement applies to the mixed sector versions of (4.1) and (4.5) dis- 
cussed in Appendix B. Here we have omitted all subscripts and superscripts specifying the 
various sectors and boundary conditions in the Ising model and hence the representation 
of D. A detailed discussion is given in Appendix B. 
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3-state Potts model on a torus with periodic boundary conditions, one 
obtains the Hamiltonian (21/ 

2 M 
H- Fj+V2+Z(aja2+,+ajaj+l) (4.12) 

3 1 

Here Fj and ~ are the matrices 

(i01) (i0 ) G =  0 0 , a j =  o9 (4.13) 

1 0 j 0 o92 j 

acting on site j and o) = exp(2rti/3). Again 2 plays the role of the inverse 
temperature and in the thermodynamic limit M--* oe the model has a 
critical point at 2 = 1 with central charge c = 4/5. The Hamiltonian (4.12) 
with periodic boundary conditions a M + l = a l  is symmetric under the 
permutation group $3 and commutes with the operators Z and E defined 
by 

Z =  ~I Fj, E =  1-I Vj, Vj= 0 (4.14) 
j=l  j=l  1 0 J 

They satisfy Z 3 = E 2 = 1 and E Z  = Z 2 E .  The Hamiltonian H splits into four 
sectors, Ho, +, Ho,_, Ha, and H2, corresponding to the four irreducible 
representations of $3. They are labeled according to the eigenvalues co X, 
K = 0, 1, 2, of Z and + 1 of E, respectively. 

According to the $3 symmetry there are nonperiodic toroidal boundary 
conditions (23) accounting for the  various integer charge sectors (2.47) 
obtained from the X X Z  Heisenberg chain with N = 2M sites. At the self- 
dual point 2 = 1 the symmetry is enhanced as the duality transformation 
becomes a true symmetry of the (mixed sector) model (see Appendix B). 

A Hamiltonian for the 3-state Potts model such that its scaled energy 
gaps coincide with those obtained through the projection mechanism from 
the normalized X X Z  Heisenberg chain (2.11) with q=-exp(iTt /6) ,  
c~ = -q-2k,  and N = 2 M -  1 sites is given by (26) 

2 2 M - -  1 

H =  ~ j~l  ( e j - - ~ )  (4.15, 

Here the operators e s are defined by 
1 2 2 e 2 j _ l = l ( l + F j T F } ) ,  e 2 j = g ( 1 - { - a j a ) + l - { - o j a j + l )  

(4.16) 
o('0 ! (1  q- (.0 FM~YM(r 1 -I- (I) ff M 1 M 0"1) ~ 2 M - - 1  ~--- 3 
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where 1 <~j<~M- 1 and x =  1, 2. Note that ,,(i) is the complex conjugate ~ 2 M - -  1 

of 0(2) Since the Hamiltonian / t  of (4.15) is Hermitian, the spectra ~ 2 M  -- 1" 

for ~: = 1 and ~ = 2 are identical. This corresponds to the degeneracy of 
the energy levels contributing to the partition functions r~m and r~11/2 1/2 ~ i / 2  

3/2 and/-)9/2 1 3 1 / 2  / 3 1 1 / 2  1/2 ~ m ,  and ~3/2 and ~3/2 [see Eq. (2.47)]. These pairs of partition 
functions are obtained through complex conjugation of the boundary angle 
c~ of the XXZ Heisenberg chain, which is also Hermitian. Furthermore, 
analysis of the number of eigenstates in each sector of H for finite values 

, ! '~3/2 of M (v'26) shows that Ho + contains the energy levels contributing to ~IL2, 
r~1/2 and that H1 -~ H2 that Ho.-  contains the energy levels contributing to ~3/2, 

1/2 contains the energy levels contributing to D~/2. In the 3-state Potts model 
the new boundary conditions are related to the duality transformation in 
the same way as in the Ising model. 

4.2. Numerical  Results for  the R = I  Mode l  w i th  u = 2  and v - - 3  

As already mentioned in Section 2, the minimal R = 1 models with 
u = 2 have a special feature: one obtains the same character functions by 
the projection procedure described in Section 2 applied to the XXZ chain 
with an even or with an odd number of sites [see Eqs. (2.39) and (2.42)]. 

Table I. Ground-State Energy per Site of the R = I  
Model wi th  u - -2 ,  v = 3  and Chains wi th  up to 18 Sites 

N - E o ( N ) / N  - E o ( N ) / N -  A o -- g c / 6 N  2 

2 -0,292428 -0.081784 
3 0.097476 -0.011858 
4 0,217963 -0.003362 
5 0.271846 -0.001316 
6 0.300700 -0.000620 
7 0.317968 -0.000330 
8 0.329126 --0.000192 
9 0.336753 -0.000119 

10 0.342199 -0.000078 
11 0.346222 -0.000053 
12 0.349279 -0.000037 
13 0.351656 -0.000027 
14 0.353541 --0.000020 
15 0.355061 -0.000015 
16 0.356304 -0.000012 
17 0.357334 -0.000009 
18 0.358197 -0.000007 
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This behavior is obviously different from the one observed in the cases of 
the Ising model (u = 3, v = 1) and the 3-state Potts model (u = 5, v = 1) 
above. It is our conjecture that for these models it is not necessary to dis- 
tinguish between spectra obtained from an even or an odd number of sites. 
The same phenomenon has been observed for the projection mechanism for 
open boundary conditions. (6) At this place we want to present some 
numerical results for the simplest example of this series, namely the model 
with v = 3 (n = 5) with central charge c = -22/5.  The sectors for this model 
are given in Eq. (2.43). 

First we discuss the ground-state energies. As ground state of our pro- 
jected model we choose Eo(N)= E~;2(3/5, N) for an even number of sites 
N and Eo(N) = E~ N) for an odd number of sites N. These are the 
states which in the finite-size scaling limit give a contribution of one to the 
partition functions f#ol(Z, ~) and ~9~ ~) for even and odd number of sites, 
respectively (see Eq. (2.43)). In Table I we list the numerical values of 
-Eo(N)/N for up to 18 sites. Also shown are the differences between these 

Table II. The Lowest Scaled Energy Gaps That Contr ibute to the Sectors 
D~o(Z, 2), resp. D~ 2), and D 2, resp. D~/2, for Chains of Length N" 

N Zl, I(Z) Zl, I(Z) ~I,t(Z) Zl,2(- ~) 

2 - 0.248 220 
3 -0.216 948 0.775 444 
4 1.606 516 -0.208 906 0.803 258 1.318 981 
5 1.816 384 -0.205 547 0.808 298 1.554 938 1.565 539 
6 1.909 047 2.281 378 -0.203 801 0.808 328 1.664 745 1.678 934 
7 1.952 922 2.552 745 -0.202 771 0.807 313 1.719 916 1.734 239 
8 1.975 088 2.712 909 -0.202 111 0.806 210 1.749 707 1.762 924 
9 1.986 887 2.810 122 -0.201 662 0.805 245 1.766 826 1.778 613 

10 1.993 425 2.870 984 -0.201 343 0.804 447 1.777 197 1.787 578 
11 1.997 155 2.910 243 -0.201 108 0.803 798 1.783 769 1.792 883 
12 1.999 321 2.936 268 -0.200 930 0.803 270 1.788 096 1.796 109 
13 2.000 587 2.953 949 -0.200 792 0.802 839 1.791 041 1.798 111 
14 2.001 321 2.966 228 -0.200 682 0.802 484 1.793 104 1.799 369 
15 2.001 733 2.974 923 -0.200 594 0.802 190 1.794 586 1.800 165 
16 2.001 948 2.981 188 -0.200 522 0.801 943 1.795 675 1.800 667 
17 2.002 041 2.985 770 --0.200 462 0.801 735 1.796 491 1.800 979 
18 2.002 058 2.989 170 -0.200 412 0.801 557 1.797 114 1.801 166 

_2 3 -0 .2  0.8 1.8 1.8 

6 < 5 x 1 0  -H < 8 •  - t~ < 2 x l O  - ~  < 3 x l O  11 <3•  <3•  

a Also shown are corresponding exact values for N--* oo and the differences 6 between the 
exact and extrapolated values (see text for details). 
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values and the first two terms in an 1IN expansion. The constant term 
Ao ~ 0.365315 is the infinite-size limit of -Eo(N)/N, which was computed 
from the exact solution (28) by numerical integration. The form of the 
second term follows from conformal invariance (29'3~ and involves the 
central charge c = -22/5 of our projected model. Apparently, there is no 
visible difference in the behavior of the ground-state energies for even or 
odd lengths of the chain. 

Now let us turn to the excitations. We present numerical data of the 
lowest energy levels which in the finite-size scaling limit contribute to 
the partition functions D~(z, ~)=D~ i )=Xl ,  l(z) ;~1.1 (i), D2( z, ~) 
D~ z, z) = Z1,2(z) X~,2(z), and D~(z, ~) = D4/2(z, ~) = ~l,l(Z) ~l,2(z) [see 
Eq. (2.43)]. In what follows we will consider energy eigenvalues only, since 
the scaled momenta [see Eqs. (2.15) and (2.16)] of the levels (taking 
into account possible shifts of N/2 corresponding to a shift of z~ in the 
momentum) are always equal to their infinite-size limit (which clearly coin- 
cides for even and odd numbers of sites in the corresponding sectors). This 

Table III. The Lowest Scaled Energy Gaps That Contribute to the Sectors D~, 
resp. D~ for Chains of Length N a 

N Zl,2(z) Zl,2(Z) 

2 -0.449 035 0.200 814 
3 -0.416 278 0.487 387 
4 -0.408 337 0.555 038 1.051 478 1.766 633 
5 -0.405 135 0.577 995 1.314 348 1.719 483 2.552 737 
6 -0.403 498 0.587 571 1.440 657 .1.686 862 1.795 216 2.628 080 
7 -0.402 541 0.592 214 1.505 180 1.665 366 2.084 961 2.649 283 
8 -0.401 932 0.594 735 1.540 342 1.650 769 2.260 334 2.652 827 
9 -0.401 519 0.596 227 1.560 652 1.640 489 2.369 054 2.650 289 

10 -0.410 226 0.597 172 1.572 990 1.633 008 2.438 439 2.645 856 
11 -0.401 011 0.597 804 1.580 817 1.627 406 2.484 026 2.641 109 
12 -0.400 848 0.598 246 1.585 973 1.623 109 2.514 805 2.636 636 
13 -0.400 721 0.598 567 1.589 479 1.619 743 2.536 112 2.632 626 
14 -0.400 621 0.598 806 1.591 933 1.617 058 2.551 201 2.629 108 
15 -0.400 541 0.598 990 1.593 693 1.614 885 2.562 107 2.626 049 
16 -0.400 475 0.599 134 1.594:984 1.613 100 2.570 138 2.623 397 
17 -0.400 420 0.599 248 1.595 949 1.611 617 2.576 150 2.621 097 
18 -0.400 375 0.599 341 1.596 683 1.610 372 2.580 721 2.619 097 

-- 0.4 0._66 1._.6_6 1.6 2 . _ . . 6 6 2 . _ _ 6 6  

< 3 x 1 0  -12 < 2 x 1 0 1 1  < 2 x 1 0  lo <3x10 -12  < 5 x 1 0 - 1 o  < 2 x 1 0  13 

a Also shown are corresponding exact values for N ~  oo and the differences ~ between the 
exact and the extrapolated values (see text for details). 
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also explains why we need not consider the sectors D~(z, f ) =  OI/2(z  , f)= 
)~1,2(z) Xl, l(f) because the corresponding energy spectra for finite chains are 
identical to those of the sectors DZ(z,f)=D4/2(z, z)=zl,  l(z)z1.2(z) (the 
corresponding Hamiltonians are related by complex conjugation). Tables II 
and III show the lowest scaled energy gaps that contribute to the partition 
functions (2.43). Underlined values correspond to exactly degenerate eigen- 
values. We also extrapolated the finite-size values to infinite length using 
the algorithm of ref. 31 (see also ref. 32), where the free variable of the 
extrapolation algorithm was chosen to be 2. The values of 6 given in 
Tables II and III are the absolute difference between the extrapolated and 
exact scaling dimensions. Obviously, the agreement between extrapolated 
and exact data is extremely good. This observation is in perfect agreement 
with our conjecture that even in finite systems there is no destinction 
necessary between an even and an odd number of sites for this model. 
Hence, the half-integer charge sectors of the XXZ Heisenberg chain do not 
correspond to new boundary conditions here. 

5. C O N C L U S I O N S  

In ref. 1 it was shown that the finite-size scaling spectra of the XXZ 
Heisenberg chain with toroidal boundary conditions and an even number 
of sites contain the spectra of various series of models with central charge 
less than one, all of them belonging to the unitary series. A projection 
mechanism was presented that allowed for the explicit extraction of the 
spectra for each model in the finite-size scaling limit. The idea of the projec- 
tion mechanism is first to choose an excited state of the (normalized) XXZ 
Heisenberg chain (2.11) with an anisotropy given by q and some boundary 
angle eo as the new ground-state of the projected system. The central 
charge of the projected model is related to q and eo by Eq. (2.23). In the 
next step we fix a specific relation between q and ~o, (2.27). This defines 
classes of models (R- and L-models) and their physical properties. Finally, 
we presented a subtraction algorithm, the projection mechanism which 
allows for the extraction of the finite-size scaling spectra of the projected 
systems from the XXZ Heisenberg chain by properly choosing charge 
sectors and boundary conditions and taking differences of sets of eigen- 
values in these sectors. The levels that remain after this projection are the 
energy levels of the projected models. 

It was observed that under certain circumstances, i.e., for certain 
choices of the anisotropy parameter q and the boundary twist e, the same 
mechanism also works on finite chains. This means that all the eigenvalues 
of certain sectors are exactly degenerate with part of the energy levels of the 
sectors from which the former are subtracted according to the projection 
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rules derived in the finite-size scaling limit. Subsequently this important 
observation could be traced back to properties of the quantum algebra 
Uq Is/(2)]. (3) 

In this paper we generalized these results in several aspects. 
In the 1R (lr)-series of ref. 1, the low-temperature O(p) models [O(p) 

models] with central charge c =  1 - 6 / [ m ( m +  1)] only the cases m even 
(odd) were considered. Here we completed this work by considering all 
values of m for both series, here called the R = 2 (L = 2) models. The missing 
models were shown to have the same sectors as the corresponding R = 1 
(Potts) models [ L =  1 (tricritical Potts) models] with the same central 
charge. The exact degeneracies observed in these models accounting for the 
possibility to apply the projection mechanism in some (not all) sectors even 
on finite chains were explained by the action of Uq[sl(2)] (Section 3). This 
is an interesting generalization of the results of ref. 3, which only discusses 
what we call the R = 1 series. That the projection mechanism works exactly 
in finite chains in some sectors but not in all of them needs further under- 
standing. 

Furthermore, we generalized the projection mechanism to arbitrary 
real values of m, i.e., to all nonunitary minimal and nonminimal models with 
c < 1 in the R and L series. In this way we were able generate all possible 
sectors of these models according to their internal global symmetries and the 
resulting toroidal boundary conditions. As in the unitary series, the sectors 
of the nonunitary R = 1, 2 and L = 1, 2 models with the same central charge 
are in general different. This implies that the physical meaning of the 
operators in these systems is not specified by their anomalous dimension 
alone and hence universality classes are not completely defined by the 
central charge and some set of anomalous dimensions. 

Extending the work of ref. 1, we considered chains with an odd 
number of sites giving rise to half-integer charge sectors. In these sectors 
we discovered in some of the projected models anomalous dimensions of so 
far unknown spinor fields. We studied the new sectors of the Ising model 
(2.46) and the 3-state Potts model (2.47) in more detail (Section 4.t). We 
showed that at their self-dual point these two models have an additional 
symmetry, the duality transformation. This symmetry gives rise to a new 
class of "duality twisted" toroidal boundary conditions. This means that 
the Hamiltonian of the corresponding models commutes with a generalized 
translation operator (4.10) performing a duality transformation at the 
boundary in combination with a translation. This is in close analogy to the 
well-known antiperiodic boundary conditions in the Ising model, where the 
generalized translation operator (4.4) performs a spin flip at the boundary 
combined with a translation. The form of the projection mechanism 
suggests that most of the projected systems have this additional symmetry. 
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However, we also discovered (nonunitary) systems where the spectra for 
integer and half-integer charge sectors are identical (Section 4.2). As the 
integer charge sectors include the sectors with periodic boundary condi- 
tions (in the projected system), these appear to be models where the duality 
twist is identical to periodic boundary conditions and, as a consequence, 
the duality transformation to the identity operator. This phenomenon is 
unknown in the unitary series. 

Using the representation theory of the quantum algebra Uq [s/(2)] and 
intertwining relations between the quantum algebra generators and dif- 
ferent sectors of the Hamiltonian of the XXZ Heisenberg chain and the 
corresponding translation operator (see Appendix A), we were in fact able 
to explain all degeneracies observed numerically in ref. 1 and in addition 
we found similar symmetry properties for many of the new sectors 
(Section 3). In particular, for all sectors (including the half-integer charge 
sectors) of all R = 1 models the projection procedure as described in this 
paper works for finite chains and the spectrum of the finite-size projected 
systems therefore is explicitly known. Furthermore, also the equality of the 
corresponding momentum eigenvalues of the degenerate levels could be 
proved (up to possible shifts of Tc in the momentum). 

APPENDIX  A. COINCIDENCES IN THE SPECTRA A N D  THE 
Q U A N T U M  ALGEBRA Uq[s/(2)] 

In what follows we show how the observed degeneracies in the spectra 
of the XXZ chain with various toroidal boundary conditions follow from 
the representation theory of the quantum algebra Uq[Sl(2)]. This is 
achieved by establishing explicit intertwining relations between elements of 
Uq[sl(2)] and different sectors of the XXZ Hamiltonian with toroidal 
boundary conditions. In addition, the equality of the momenta of the 
degenerate levels is proved by an analogous argument. 

Let us commence by defining the quantum algebra Uq[Sl(2)]. It is 
generated by the four generators S -+ and q+_S~ subject to the relations (see 
ref. 3 and references therein) 

qS~S+- =q+lS+qSZ, [S +, S - ]  - - - -  [2SZ]q (A.1) 

(together with the relation qS~q-S~=q SZqS~=l ' which has been 
anticipated by the notation), where [X]q, the "q-deformed of x," is defined 
by [X]q=(qX-q x)/(q_q-1) and q is a complex number with q 2 # l .  
A representation of this quantum algebra on fig(N) ~ (C2) | in terms of 
Pauli matrices is given by (3) 

N N 
j-~, z 2 N z S+-= E S+=�89 • q ('/2)Zk=l~ka+q (1/)~2~=j+1~ 

j= 1 j= 1 (A.2) 
qS ~ = q ( 1 / 2 ) Z ~ = l  ~ 
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The decomposition of this in general reducible representation on 
-_~(N) into irreducible representations of Uq[Sl(2)] has been discussed in 
ref. 3. It turns out that for generic values of q, i.e., q not being a root of 
unity, this decomposition resembles the undeformed U[sl(2)] case, (33'34) 
whereas for q being a root of unity the situation is completely different. (35) 
Consider the case Iq[ # 1, where one has a continuous dependence on 
the complex variable q. If q approaches a root of unity, two formerly 
irreducible representations may become connected by the action of 
Uq[sl(2)] constituting one larger indecomposable representation in this 
way. These "mixed" representations, however, are no longer irreducible, 
since they contain the smaller of the two representations as an irreducible 
submodule, i.e., the representation (A.2) in this case is no longer completely 
reducible. 

Following an idea suggested in ref. 3, we now calculate the action of 
powers of the operators S -+ on the Hamiltonian H(q, ~, N) of (2.1) and the 
translation operator T(~, N) of (2.4). The other generator qS~ obviously 
commutes with both H(q, ~, N) and T(~, N). By induction one can show 
that 

(S-+)" mq, u) 

= H(q, q-2~, N)(S+-)" 
In]q! 

( ~ --~N +(q+-lS+-)" ' 
-T-2 ffNq S~- [El-- 1]q! 

~ (q-V 1S-+)"- 1 
T2  z ,~, + 

(S~+) --2 ] 
S ?  S~q [El --  2 ] q !J ( 1 --  q2(SZ +_ n)~ T I ) 

(s+-)n-2) 
S~vS ? -~-~q~./  (1 -q  2(s:• 

(A.3) 

(S-+)n T(~, N) 
In]q] 

= (q~)" T(~, N) (S+-)n 
[El]q ! 

(q+-lS+-),,-1 
+ S  + ~-~Si]q! T(~, N)(1 _q2(S~+_.)~z-,) 

= eT(q-2"~, N) (S+-)" 
[n]q] 

(q• +s(  (A.4) 
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with e =  +1. Here we used [r/]q[ for the product In]q!-=H~=I [J]q. For 
the case n = 1, Eq. (A.3) has already been obtained in ref. 3. The ambiguity 
in Eq. (A.4) is due to the square root [cf. the definition of the translation 
operator in Eq. (2.4)], the sign being fixed (but depending on the actual 
values of e, q, and n) once one chooses a particular branch. We do not 
want to investigate this further; we rather consider all momenta to be 
defined modulo rc [-which after all is exactly what enters in the finite-size 
scaling partition function; see Eqs. (2.13)-(2.15 ) ]. 

It is our aim to extract from the above equations information about 
degeneracies in the spectra of H(q, ~, N) for different boundary conditions 
~. For this purpose it is convenient to consider the several charge sectors 
separately. With the abbreviations 

H~(N) = H(q, q2K, N). #o(U), T~(N) -= T(q 2x, U). ~o(U) (A.5) 

we obtain from Eqs. (A.3) and (A.4) the following "intertwining relations": 

(_~] S+-~'~ ~i HQ~ = HQ(o +,)(N) (S+ )n - I n ] q !  (A.6) 

( s-I-)n Qwn (S+-)" (a.7) 
[n]q! T• (N)=eTQ(o+,I(N) In]q! 

for all n = 1, 2, 3 .... and - N/2 <~ Q <~ N/2, where e = _+ 1. 
Suppose now that the set 

N 

of common eigenvectors of H~(N) and T~(N) constitutes a basis of ~ Q ( N )  
and denote the set of pairs of corresponding eigenvalues by ~ ( N ) ,  

~ ( N ) - -  {(ej, pj)lH~(N)v~=ejv~, TI~(N) v~= +exp(-ipj)v~} (A.8) 

Then, by applying Eqs. (A.6) and (A.7) to eigenstates of the Hamiltonian 
and the translation operator, one obtains the inclusions 

dQ~"(N) = ~ O  + n)(N) (A.9) 

for all positive values of Q and n. Strictly speaking, these inclusions are 
obtained for generic values of q only, but since the eigenvalues depend 
continuously on q (in the case of finite N), they also hold for the case that 
q is a root of unity. Indeed, in this case the observed degeneracies are much 
higher than for generic q. 
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To obtain the inclusions (A.9) we in fact also used the simple structure 
of the irreducible representations of Uq[Sl(2)] for generic q. One only has 
to realize that if one has a level in charge sector Q inside any irreducible 
representation, this representation contains exactly one level in the charge 
sectors Q' with IQ'f ~< Q, where Q' is integer (half-integer) if Q fs integer 
(half-integer). 

Using in addition the charge conjugation transformation C of (2.9) 
which leads to ~I~(N)=~:~(N) for all values of K and Q, one finally 
obtains the following result: 

~ ( N )  = ~ ( N )  for all [KI >1 [Q[ (A.10) 

and K and Q are both integer (half-integer) numbers for even (odd) number 
of sites, respectively. 

Now we turn to the case when q is a root of unity. We define an 
integer p by 

p=min{n>Oiq2n=l}=min{n>Olqne{+l}} (A.1!) 

In this case the boundary condition is defined modulo p, since H~(N)= 
H~+W(N) and T~(N)= TI~+~P(N) for all v E 7/. Hence from Eq. (a.10) one 
directly obtains the result 

~ ( N )  = g~OK+ vp(N) (A.12) 

for all K~> JQ[, where v is an arbitrary positive integer number and we 
restrict K to the values 0 ~<K~< p -  1/2. 

In addition to this rather trivial modification one observes additional 
degeneracies which show up due to the mixing of irreducible represen- 
tations of Uq[sl(2)] when q approaches a root of unity, since all states in 
an indecomposable representation that correspond to eigenstates of our 
Hamiltonian in the appropriate sectors have the same energy (and momen- 
tum). To make the statement more precise, we use the results of ref. 3 on 
the indecomposable representations of Uq[sl(2)] for q being a root of 
unity. This finally leads to the inclusion relation 

~ ( N )  = ~QK(N) = ~ - ~ ( N )  (A.13) 

for p/2 >~ ]KI >t IQI >~ 0 and 2 K -  = 2Q = N m o d  2, where f#~(N) is defined to 
be 

~(N)= U ~ (A.14) 
v ~ '  
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By closer inspection of Eq. (A.13) one realizes (see ref. 3) that the set of all 
levels contained in r  which are not contained in ~ ( N ) ,  i.e., the 
difference ~ ( N )  of the two sets 

~ ( N )  = ~ ( N )  - g ~  (A.15) 

is just the set of levels that correspond to the highest weights of those 
irreducible representations in the decomposition of the represeritation (A.2) 
which are isomorphic to U[sl(2)] irreducible representations. It is therefore 
obvious that Eq. (A.14) really relies on the structure of the irreducible 
representations and contains more information about the spectrum than 
Eq. (A.12). 

APPENDIX B. THE DUALITY TRANSFORMATION IN THE 
ISING QUANTUM CHAIN 

Here we give a brief review of the duality transformation in the Ising 
quantum chain. The duality transformation is a map between the low- and 
high-temperature phases of the system. Denoting the inverse temperature 
by )~ and the Hamiltonian (to be specified below) by H(2), one finds that 
H(2) and its dual HD(2) have the same spectrum (=) and are related b}r the 
duality transformation D 

DH(,~) = HD(2) D (B.1) 

D depends on the boundary conditions. In what follows we consider the 
mixed sector Hamiltonian H of a chain with M sites, 

B (  -+)03  = - (e~j_ 1 - �89 + ~ ( e ~ j -  �89 
j 1 

+ (e=._ ~ - �89 + .~,~,~r~ �89 (B.2) 

where the ej for I~< j~<2M-1  are defined by Eq.(4.6) and e~t)= 
(1 • Here S is the spin-flip operator defined in Eq. (4.2). 
In H (+) one has periodic boundary conditions in the even charge sector 
(S = 1) (for brevity, we denote the projection on this sector by H ~ and 
antiperiodic boundary conditions in the odd sector (S=  -1 )  denoted by 
H~. H(- )  corresponds to periodic boundary conditions in the odd sector 
(denoted H ~ and antiperiodic boundary conditions in the even sector H i. 
/t(• satisfies the duality relation 

D(+)H(+-)(2)(D(+-))-'= R(+-)~ 2R+- (1) (B.3) 
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The duality transformation D c-+) is given by (24'25) 

2 M - -  1 

D c+)= [-[ &, D ( )=D(+)a]~ (B.4) 
j = l  

The operators & are related to the ej by ga= (1 + i ) e j - I .  The gj are 
invertible (one finds g j t  = g , )  and one can show that D acts on the ej as 
follows (25, 26): 

DC• -1 = ej+ ~, 

D!+-)e2M 1(De+))-1= e(2~ ) 

D c-+ )e~)(D c+ )) -* = el 

1 < ~ j ~ 2 M -  2 

(B.5) 

The e2j are the operators dual to the e=j_ 1. 
Using the projectors P(_+)= (1 _+ S)/2 on the even and odd sectors of 

H c-+), P(-+)/-IC+)= H~' as defined above, one finds the duality relations for 
the sectors of the Ising Hamiltonian 

Htg(i)= AH~' ( ~ ) =  H~,(2) (B.6) 

with l, l ' =  0, 1. In the derivation of these relations one has to take into 
account that D {+) commutes with P(+), but D t-)Pc+) = Pc v ) D ( -  ). We see 
that the duality relation (B.3) does not hold for the Hamiltonian H of (4.1) 
given in Section4, which in terms of the sectors Ht, ' is given by 
H : - H ~  ~ for periodic boundary conditions and H=H~+H11 for 
antiperiodic boundary conditions. 

From relations (B.5) it is obvious that D 2 commutes with/~{-+) and 
is related to the translation operators T of (4.3) and T' of (4.4). A short 
calculation shows 

T (+)= (D(+)) 2 = i v+ ~T(P(+)+ a~P(_)) 

T(- )  ___ (D(Z)) 2 = iMT(p(_)+ axmP(+)) 
(B.7) 

Since (D (- 2)2 commutes with P(+), we can construct a translation operator 
commuting with the H of (4.1) by taking suitably chosen projections on the 
even and odd subspaces. We find 

T= i - M- I(T(+)P(+) + iT(- )P(_ )) 

T '= T a ~ = i  M-I(T(+)P(_)+iT(-)P(+)) 

(B.8) 

(B.9) 
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commuting with H with periodic boundary conditions and antiperiodic 
boundary conditions, respectively. The factors i M, i M+I are of course 
irrelevant. 

Next we consider the mixed sector version of the Ising Hamiltonian 
/~(2, #) defined by 

/~(-+)(2,/~)=-- (e2j-1 1)+)~(e2j 21-)+ ''re(-+) 1 - - m 2 M - 1 - -  ~ )  ( B . 1 0 )  
j 1 

where the ej for 1 <~j<<,2M-2 are defined as in Eq. (4.6), but ~2M-"(-+) ~ = 
(1-T-SaYMa~I)/2. The duality transformation /3 (• satisfying analogous 
relations to (B.5) (with 2 M -  1 replaced by 2 M - 2  and 2M replaced by 
2 M -  1) is given by (25'26) 

2 M - -  2 

/3(+)-- 1-I �9 /3( ) - - / ) (+)~t  (B.11) 
j = l  

From this one obtains the transformed Hamiltonian satisfying 

/3(• 2)(/3(-+))-~ = ~./~(-+)(~, 1) (B.12) 

Since /3 (-+) commutes with S, (B.12) holds for each sector separately. 
It is important to note that (/3(-+)) 2 does not commute with B(• #) 
unless 2 = # =  1. Only in this case /7 (-+) is translationally invariant with 
~(-+)= (/~(+_))2 given by 

T( + ) = iMT(p( + )g*M ~ 2 g'M-- I -- iP(-  )g2M- 2 g2M-- 1) 
(B.13) 

T ( )= iMT(p(+)g2M-2g2M-t  + iP(--)g*M--2g*M--l) 

where gZM-2 and g2M-~ are defined in Eq. (4.11). By taking projections on 
the even and odd subspaces one obtains the translation operator T of 
(4.10) commuting with B given in (4.5): 

~ =  Tg2M_2g2M_I=(- - i )M (T( - )P(+)+iT(+)P(_) )  (B.14) 

Finally, we compute ~M. We define go = - (1  -i)(1--iaMa~)/2. It follows 
from Eq. (B.5) that (D(+)) -1 goD(+)= - ( 1 -  i ) (1 -  iSa~)/2 and therefore 

2 M - -  1 1 - -  " 

TM=go 1-[ gJ-- -~ti)(+)(1--iSaM)gZM--1 
j = l  

= - ~ b ( - ) P ( + ) -  iD(+)P(_) (B.15) 

This is the duality transformation in the even and odd sectors of H. 
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W e  want  to conclude  this shor t  review by not ing  that  the dua l i ty  
t r ans fo rma t ion  in the 3-state Po t t s  mode l  proceeds  a long  s imilar  lines. 

On ly  the ope ra to r s  ej have to be replaced  by those given in Sect ion 4 for 
the 3-state Po t t s  mode l  and  the discussion of  the var ious  sectors is s l ightly 
more  compl i ca t ed  due to the higher  symmet ry  ($3 ins tead  of  $2). In  
par t icu lar ,  the mixed sector  vers ion of the H a m i l t o n i a n  (4.12) is defined by 

tak ing  aM+ 1 = (-oKZ~ K = 0, 1, 2. 
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